z-logo
Premium
Activation of Relaxin‐Related Receptors by Short, Linear Peptides Derived from a Collagen‐Containing Precursor
Author(s) -
Shemesh Ronen,
Hermesh Chen,
Toporik Amir,
Levine Zurit,
Novik Amit,
Wool Assaf,
Kliger Yossef,
Rosenberg Avi,
Bathgate Ross A. D.,
Cohen Yossi
Publication year - 2009
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.2009.03827.x
Subject(s) - relaxin , forskolin , receptor , g protein coupled receptor , transfection , stimulation , microbiology and biotechnology , peptide , signal transduction , biology , chemistry , cell culture , endocrinology , biochemistry , genetics
In a screening effort based on algorithmic predictions for novel G‐protein‐coupled receptor (GPCR) peptide activators, we were able to identify and examine two novel peptides (P59 and P74) which are short, linear, and derived from a natural, previously unidentified precursor protein containing a collagen‐like repeat. Both peptides seemed to show an apparent cAMP‐related effect on CHO‐K1 cells transiently transfected with either LGR7 or LGR8, usually after treatment with cAMP‐generating forskolin, compared to the same cells treated with forskolin plus relaxin. This activation was not found for the relaxin‐3 receptor (GPR135). In a set of follow‐up experiments, both peptides were found to stimulate cAMP production, mostly upon initial stimulation of cAMP production by 5 μM forskolin in cells transfected with either LGR7 or LGR8. In a dye‐free cell impedance GPCR activation assay, we were able to show that these peptides were also able to activate a cellular response mediated by these receptors. Although untransfected CHO‐K1 cells showed some cellular activation by both relaxin and at least one of our newly discovered peptides, both LGR7‐ and LGR8‐transfected cells showed a stronger response, indicating stimulation of a cellular pathway through activation of these receptors. In conclusion, we were able to show that these newly discovered peptides, which have no similarity to any member of the relaxin–insulin‐like peptide family, are potential ligands for the relaxin‐related family of receptors and as such might serve as novel candidates for relaxin‐related therapeutic indications. Both peptides are linear and were found to be active after being chemically synthesized.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here