z-logo
Premium
Population Coding in Cortical Area MST
Author(s) -
TAKEMURA A.,
KAWANO K.,
QUAIA C.,
MILES F. A.
Publication year - 2002
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.2002.tb02827.x
Subject(s) - vergence (optics) , population , stimulus (psychology) , eye movement , visual cortex , sensory system , mathematics , neuroscience , artificial intelligence , computer science , psychology , medicine , environmental health , psychotherapist
A bstract : Disparity steps applied to large patterns elicit vergence eye movements at ultrashort latencies. Disparity tuning curves, describing the dependence of the amplitude of the initial vergence responses on the amplitude of the disparity steps, resemble the derivative of a gaussian and indicate that appropriate servo‐like behavior occurs only with small disparity steps (<1 degree). Lesion data from monkeys suggest that these vergence responses are mediated, at least in part, by neurons in the medial superior temporal area of the cerebral cortex, and we here review a recent study of the associated single unit activity in that area. Few medial superior temporal neurons have disparity tuning curves whose shapes resemble the tuning curve for vergence. Yet, when the disparity tuning curves for all of the disparity‐sensitive cells recorded from a given monkey are summed together, they match the tuning curves for the vergence responses of that monkey very closely, even reproducing that animal's idiosyncracies. When all of the spike trains elicited by a given disparity step are summed together to give an average discharge profile for the whole population of recorded cells, many are noisy, but others that are less so match the temporal profile of the motor response, vergence velocity, quite well. We conclude that the discharges of the disparity‐sensitive cells in the medial superior temporal area each represent only a very limited aspect of the sensory stimulus (and/or associated motor response?), but when pooled together, they provide a complete description of the vergence velocity motor response: population coding.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here