Premium
Realistic Solar Surface Convection Simulations
Author(s) -
STEIN ROBERT F.,
NORDLUND ÅKE
Publication year - 2000
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.2000.tb06161.x
Subject(s) - convection , buoyancy , physics , radiative transfer , mechanics , thermal , convection zone , turbulence , atmospheric convection , boundary layer , radiative cooling , vorticity , computational physics , meteorology , vortex , optics
A bstract : We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p‐mode frequencies, the p‐mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto‐convection.