Premium
Involvement of Gene Products in Bacterial Evolution
Author(s) -
ARBER WERNER
Publication year - 1999
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1999.tb08863.x
Subject(s) - horizontal gene transfer , gene , biology , mutagenesis , natural selection , genetic variation , molecular evolution , dna , genetics , genome , evolutionary biology , adaptive evolution , selection (genetic algorithm) , directed molecular evolution , bacterial genome size , mutation , computational biology , directed evolution , mutant , computer science , artificial intelligence
Three strategies of different quality contribute in parallel to the natural formation of genetic variants in bacteria: (1) small local alterations of DNA sequences; (2) recombinational reshuffling of segments of the genome; and (3) acquisition of DNA sequences by horizontal gene transfer. Key enzymes involved in these processes often act as variation generators by making use of structural flexibilities of biological macromolecules and of the effect of random encounter. In the theory of molecular evolution, genetic determinants of variation generators as well as of modulators of the frequency of genetic variation are defined as evolutionary genes. This postulate is consistent with the notion that spontaneous mutagenesis is in general not adaptive and that the direction of evolution depends on natural selection exerted on populations of genetic variants.