Premium
Connective Tissue and Repair in the Heart
Author(s) -
WEBER KARL T.,
SUN YAO,
KATWA LAXMANSA C.,
CLEUTJENS JACK P. M.,
ZHOU GUOPING
Publication year - 1995
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1995.tb17438.x
Subject(s) - columbia university , health science , library science , medicine , center (category theory) , sociology , medical education , media studies , chemistry , computer science , crystallography
The heart is composed of highly differentiated cardiac myocytes, which constitute parenchyma, and stroma or connective tissue. Fibrillar collagen turnover in the heart and its valve leaflets, in particular, is dynamic and essential to tissue repair. Emerging evidence further suggests connective tissue is a metabolically active entity, where peptide hormones are generated and degraded and, in turn, these peptides regulate collagen turnover. This concept arose from quantitative in vitro autoradiography using an iodinated derivative of lisinopril (125I-351A) as ligand to localize angiotensin converting enzyme (ACE) binding density within the heart. A heterogeneous distribution was found: low-density ACE binding within atria and ventricles; high ACE binding density at sites of high collagen turnover, such as valve leaflets, adventitia, and fibrous tissue of diverse etiologic origins. ACE-producing cells at these latter sites were identified by monoclonal ACE antibody. They included valvular interstitial cells (VIC) and fibroblast-like cells each of which also contained alpha-smooth muscle actin and the transcript for type I collagen (in situ hybridization). Substrate utilization in cultured VIC was found to include angiotensin I and bradykinin. Angiotensin II and bradykinin receptor-ligand binding was observed in VIC and at fibrous tissue sites. Connective tissue ACE is independent of circulating angiotensin II. In vivo, fibrous tissue formation is attenuated by ACE inhibition or antagonism of AT1 receptor. Angiotensin II and bradykinin are stimulatory and inhibitory, respectively, to cultured adult cardiac fibroblast collagen synthesis suggesting a paradigm of reciprocal regulation to fibroblast collagen turnover. Stroma and its cellular constituents represent a dynamic metabolic entity that regulates its own peptide hormone composition and turnover of fibrillar collagen. These findings may provide insights that could be used to advantage to either promote or forestall fibrous tissue formation depending on the nature of cardiovascular disease.