z-logo
Premium
Regulation of Arcuate Nucleus Synaptology by Estrogen a
Author(s) -
LEEDOM LIANE,
LEWIS CAROLE,
GARCIASEGURA LUIS MIGUEL,
NAFTOLIN FREDERICK
Publication year - 1994
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1994.tb55787.x
Subject(s) - haven , obstetrics and gynaecology , garcia , medicine , humanities , art , biology , pregnancy , genetics , mathematics , combinatorics
Estrogen modulates the synaptology of the hypothalamic arcuate nucleus during sexual differentiation of the rat brain in both males and females. In males, testosterone of gonadal origin is converted to estrogen in the brain by an enzyme, aromatase, which is also present in females. The exposure of the male's hypothalamus to relatively high levels of estrogen (following a perinatal testosterone surge) leads to the development of a pattern of synaptogenesis which does not support an estrogen-induced gonadotrophin surge in the adult. In female rats, hypothalamic development occurs with permissively low levels of estrogen, enabling a midcycle estrogen-induced gonadotrophin surge and ovulation in adulthood. During adult reproductive life in female rats, circulating estrogen modulates the synaptology of the arcuate nucleus. The most physiological example of this is the 30-50% loss of axosomatic synapses following the preovulatory estrogen surge on diestrus-proestrus. Studies on post-synaptic membranes of the arcuate nucleus reveal sex differences in membrane organization and protein content which are estrogen-dependent. Estrogen apparently stimulates endocytosis of areas of post-synaptic membrane that are dense with small intramembranous protein particles, resulting in a reduction in the number of small intramembranous particles. This also appears to be the physiologic mechanism of neuronal changes in females during the estrus cycle. Repeated exposure to preovulatory levels of estrogen may lead to an age-related decline in reproductive capacity in female rats. Aging females lose the estrogen-induced gonadotrophin surge responsible for ovulation. This loss of function may result from a cumulative estrogen effect during the repeated ovarian cycles which results in a reorganization of the synaptology on which regulates the estrogen-induced gonadotrophin surge. The membrane organization of the senescent constant estrus aged female appears indistinguishable from the males. The hypothalamic circuits modulated by estrogen have yet to be delineated. However, recent research has shown that GABA, the monoamines, and several neuropeptides are participants in the estrogen-sensitive network which regulates GNRH secretion. In this regard, present work shows estrogen-induced changes in GABA and dopamine synapses in the arcuate nucleus.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here