z-logo
Premium
Ferrous‐Citrate Complex and Nigral Degeneration: Evidence for Free‐radical Formation and Lipid Peroxidation a
Author(s) -
MOHANAKUMAR K. P.,
BARTOLOMEIS A. DE,
WU R.M.,
YEH K. J.,
STERNBERGER L. M.,
PENG S.Y.,
MURPHY D. L.,
CHIUEH C. C.
Publication year - 1994
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1994.tb21828.x
Subject(s) - mental health , medicine , gerontology , family medicine , library science , psychiatry , computer science
Increased nigral iron content in the parkinsonian brain is now well documented and is implicated in the pathogenesis of this movement disorder. Free iron in the pigmented DA-containing neurons catalyze DA autoxidation and Fenton reaction to produce cytotoxic .OH, initiating lipid peroxidation and consequent cell damage. The present results clearly demonstrate that a regional increase in the levels of the "labile iron pool" can result in the degeneration of dopaminergic nigral neurons as reflected by a significant inhibition in the expression of tyrosine hydroxylase mRNA and DA depletion. Iron-complex-induced damage of dopaminergic neurons in the substantia nigra, might have resulted from a sequence of cytotoxic events including the .OH generation and lipid peroxidation as demonstrated in this study. This free-radical-induced oxidative nigral injury may be a reliable free-radical model for studying parkinsonism and may be relevant to idiopathic Parkinson's disease. This apparent nigral injury stimulated by Fe(2+)-citrate is more severe than that produced by ferric iron and its citrate complex. Moreover, these data indicate that Fe(2+)-citrate is as potent as MPP+ in causing oxidative injury to the substantia nigral neurons. However, the nigral toxicity of MPTP and its congeners are not progressive, while Fe(2+)-citrate complex may produce a progressive degeneration of the nigrostriatal neurons which is similar to the progression of ideopathic Parkinson's disease. Thus, this unique Fe(2+)-citrate complex animal model could be used for studying neuroprotective treatments for retarding or halting the progressive nigrostriatal degeneration caused by free radicals in the iron-rich basal ganglia.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here