z-logo
Premium
Electrical Activity and Calcium Channels in Neuroendocrine Cells
Author(s) -
SCHERÜBL HANS,
HESCHELER JÜRGEN,
BYCHKOV ROSTISLAV,
CUBER JEAN CLAUDE,
JOHN MATHIAS,
RIECKEN ERNSTOTTO,
WIEDENMANN BERTRAM
Publication year - 1994
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1994.tb17283.x
Subject(s) - humanities , philosophy
Similar to neuronal cells, neuroendocrine cells express voltage-dependent ion channels and fire action potentials. Ca2+ influx through voltage-dependent Ca2+ channels couples changes in membrane potential to Ca(2+)-dependent cellular processes, such as hormone release. Using the patch-clamp technique, we studied the spontaneous electrical activity as well as voltage-dependent Ca2+ channels in cholecystokinin-producing pancreatic cells (RIN 1056E cell line), in prolactin-secreting pituitary cells (GH3 cell line), and in calcitonin-secreting cells of the thyroid (rMTC 44-2 cell line). All three cell types displayed spontaneous electrical activity, that is, they spontaneously produced action potentials. RIN 1056E cells, GH3 cells, and rMTC cells exhibited (various types of) voltage-dependent Ca2+ channels that were regulated by various neurotransmitters and hormones, such as somatostatin.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here