z-logo
Premium
Release of Membrane‐associated Growth Factors during Neural Injury a
Author(s) -
VRIES GEORGE H.,
NEUBERGER TIMOTHY J.,
Baichwal ROOPA R.,
BIGBEE JOHN W.,
ZANE LEE,
YOSHINO JUN E.
Publication year - 1993
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1993.tb18301.x
Subject(s) - george (robot) , annals , library science , art history , history , classics , computer science
The release of membrane-associated growth factors after neural injury may influence the outcome of the recovery. For example, for remyelination to occur after neural injury it is critical for the glial cell to proliferate prior to remyelination in both the PNS and CNS. In the CNS, the relative response of the oligodendrocytes and astroglia to growth factors mobilized during neural injury may play a role in the cellular dynamics of repair of neural injury or scarring and subsequent failure to repair neural injury. In support of this view, we have studied the mitotic potential and cell cycle kinetics of cultured adult oligodendrocytes and found that these adult cells respond only weakly to factors such as FGF which are known to be potent mitogens for neonatal cells. However, given the same dose of FGF, adult astrocytes are mitotically stimulated to a much greater degree than are the adult oligodendrocytes (Vick and De Vries, unpublished observations). Given the pathways which may be operative in the release of growth factors after injury, it has not escaped our attention that, provided the released factors are in equilibrium with easily accessible and peripheral body fluids, these released factors may serve as new markers for neural injury. Further experiments are in progress to explore this possibility.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here