Premium
Structure/Activity Relationships in Basic FGF
Author(s) -
SEDDON ANDREW,
DECKER MILDRED,
MÜLLER THOMAS,
ARMELLINO DOUGLAS,
KOVESDI IMRE,
GLUZMAN YAKOV,
BÖHLEN PETER
Publication year - 1991
Publication title -
annals of the new york academy of sciences
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1991.tb49021.x
Subject(s) - fibroblast growth factor , computational biology , chemistry , microbiology and biotechnology , biology , biochemistry , receptor
Although the FGFs have been subject to extensive biological studies, only limited progress has been made so far in determining the critical elements of structure-activity relationships in the FGFs. Among the recognized structural elements with potential to affect the biological activity of FGFs are the cysteine residues, and the heparin- and receptor-binding domains. These features have been studied using a variety of experimental approaches, but the available data are inconclusive. For example, ambiguity regarding the presence of a disulfide structure in FGFs was not resolved until the availability of x-ray crystal structure data. Furthermore, the functionally important heparin- and receptor-binding domains have been poorly characterized, with some interpretations being controversial. In this report, we describe a novel fragment of basic FGF (bFGF) with high biological activity [Ser78,96-bFGF(70-153)]. This fragment was generated by pronase treatment of heparin-bound recombinant Glu3,5Ser78,96-bFGF mutant and is active in vitro at an ED50 of about 100 ng/ml. The structure of the fragment and the manner by which it was generated provide additional insight into important aspects of structure-activity relationships in FGFs. Specifically, we conclude that (a) the cysteines in our bFGF mutant do not form a disulfide bond, (b) the high-affinity heparin binding of bFGF critically depends on an intact 3-dimensional structure of the growth factor rather than on specific heparin-binding sequence domains, and (c) the bFGF sequence between residues 70 and 122 is important for high biological activity.