z-logo
Premium
Endoplasmic Reticulum as a Source of Ca 2+ in Neurotransmitter Secretion
Author(s) -
ETCHEBERRIGARAY RENE,
FIEDLER JENNY L.,
POLLARD HARVEY B.,
ROJAS EDUARDO
Publication year - 1991
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1991.tb36484.x
Subject(s) - diabetes mellitus , library science , biology , gerontology , physiology , medicine , endocrinology , computer science
Depolarization of the synaptosomal membrane by a rapid elevation of [K+]0 induces secretion of adenosine-5'-triphosphate (ATP) as well as the specific neurotransmitters. In addition to the classical [Ca2+]0-dependent mode, we have found that ATP secretion also occurred in the absence of extracellular calcium [( Ca2+]0 less than 1 microM). The extent of both modalities of secretion depended on membrane potential, and the [Ca2+]0-independent secretion proceeded at a rate that was substantially smaller than that of the [Ca2+]0-dependent mode at all membrane potentials examined. We propose that intracellular stores may provide the Ca2+ required for exocytosis in the [Ca2+]0-independent mode of ATP secretion. To test this hypothesis, we searched for the presence of Ca(2+)-release channels gated by intracellular messengers in our synaptosomal preparation. We fused membrane vesicles from lysed synaptosomes with acidic phospholipid bilayers formed at the tip of a patch pipette and found that these membranes contained a Ca(2+)-selective channel. The properties of this channel resemble those of the Ca(2+)-release channel reconstituted from sarcoplasmic reticulum membrane vesicles. These include size of the single open-channel conductance (75 pS Cs+ as the main current carrier), activation by adenine nucleotides (ATP), ryanodine and caffeine, and inhibition by ruthenium red.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here