Premium
Physiological Properties of Oligodendrocytes during Development a
Author(s) -
KETTENMANN H.,
BLANKENFELD G. V.,
TROTTER J.
Publication year - 1991
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1111/j.1749-6632.1991.tb15596.x
Subject(s) - library science , citation , physics , computer science
The electrical properties of oligodendrocytes during their development in cell culture were analyzed by combining two techniques: cell identification with cell-type and stage-specific antibodies and the patch-clamp technique. The transition from the bipotential precursor cell, which can still develop into astrocytes and oligodendrocytes, into an oligodendrocyte results in a marked change in the ion channel pattern. During this developmental transition, voltage-activated Na+ and several types of K+ currents disappear, whereas a comparatively passive, inwardly rectifying K+ current becomes dominant. GABAA receptor-mediated Cl- currents and a pH-activated Na+ current are down-regulated at this transition but are still present at all developmental stages. In contrast, electrical coupling develops only in oligodendrocytes. This change in the channel repertoire could reflect the transition of a cell in a mobile, mitotic, plastic state (the glial precursor) to a more differentiated specialized state (the oligodendrocyte).