Premium
Functions of glutamate transporters in cerebellar Purkinje cell synapses
Author(s) -
Takayasu Y.,
Iino M.,
Takatsuru Y.,
Tanaka K.,
Ozawa S.
Publication year - 2009
Publication title -
acta physiologica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.591
H-Index - 116
eISSN - 1748-1716
pISSN - 1748-1708
DOI - 10.1111/j.1748-1716.2009.02019.x
Subject(s) - metabotropic glutamate receptor 1 , glutamate receptor , metabotropic glutamate receptor , metabotropic glutamate receptor 6 , metabotropic glutamate receptor 7 , neuroscience , silent synapse , biology , long term depression , glutamatergic , cerebellum , metabotropic glutamate receptor 8 , purkinje cell , metabotropic glutamate receptor 5 , microbiology and biotechnology , neurotransmission , chemistry , ampa receptor , receptor , biochemistry
Glutamate transporters play a critical role in the maintenance of low extracellular concentrations of glutamate, which prevents the overactivation of post‐synaptic glutamate receptors. Four distinct glutamate transporters, GLAST/EAAT1, GLT‐1/EAAT2, EAAC1/EAAT3 and EAAT4, are distributed in the molecular layer of the cerebellum, especially near glutamatergic synapses in Purkinje cells (PCs). This review summarizes the current knowledge about the differential roles of these transporters at excitatory synapses of PCs. Data come predominantly from electrophysiological experiments in mutant mice that are deficient in each of these transporter genes. GLAST expressed in Bergmann glia contributes to the clearing of the majority of glutamate that floods out of the synaptic cleft immediately after transmitter release from the climbing fibre (CF) and parallel fibre (PF) terminals. It is indispensable to maintain a one‐to‐one relationship in synaptic transmission at the CF synapses by preventing transcellular glutamate spillover. GLT‐1 plays a similar but minor role in the uptake of glutamate as GLAST. Although the loss of neither GLAST nor GLT‐1 affects cerebellar morphology, the deletion of both GLAST and GLT‐1 genes causes the death of the mutant animal and hinders the folium formation of the cerebellum. EAAT4 removes the low concentrations of glutamate that escape from uptake by glial transporters, preventing the transmitter from spilling over into neighbouring synapses. It also regulates the activation of metabotropic glutamate receptor 1 (mGluR1) in perisynaptic regions at PF synapses, which in turn affects mGluR1‐mediated events including slow EPSCs and long‐term depression. No change in synaptic function is detected in mice that are deficient in EAAC1.