Premium
Energy saving in activated sludge plants by the use of more efficient fine bubble diffusers
Author(s) -
Jolly Martin,
Green Steve,
WallisLage Cindy,
Buchanan Annelle
Publication year - 2010
Publication title -
water and environment journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 37
eISSN - 1747-6593
pISSN - 1747-6585
DOI - 10.1111/j.1747-6593.2009.00164.x
Subject(s) - diffuser (optics) , aeration , effluent , bubble , activated sludge , sewage , waste management , environmental science , environmental engineering , sewage treatment , engineering , marine engineering , computer science , physics , light source , parallel computing , optics
Many activated sludge plants (ASP) use fine bubble diffused air as their source of oxygen. Blowers are attached to air pipework, which distributes air to a network of diffusers installed on the floor of the ASP tank. Modern diffusers are made from a rubber membrane which flexes to allow fine bubbles of air to pass through holes in the diffusers which then pass into the mixed liquors in the tank. The diffusers come as circular discs, tubes and more recently mats or panels. Yorkshire Water is in the process of building new ASP at some of their biggest sewage treatment works to meet new final effluent consent standards associated with the freshwater fisheries directive (FFD). These new works will treat sewage from a combined population of over two million people in the Yorkshire area. Black & Veatch is involved in some of the first works to have a new type of fine bubble diffuser installed in the ASP basins. These diffusers resemble a mat or panel and are fixed to the floor of the tank as opposed to circular and tubular diffusers which as fixed above the floor. Oxygen transfer testing has been carried out to show the efficiency of these aeration systems, which may offer significant savings in operating costs to water operators. This paper examines the results from the tests and compares them with other tests carried out in the United States and tests that have been carried out on other types of diffusers. The paper will discuss the results of the oxygen transfer tests and present capital and net present costs (NPC) for various diffuser installations.