Premium
Antimalarial Activity of Newly Synthesized Chalcone Derivatives In Vitro
Author(s) -
Yadav Neesha,
Dixit Sandeep K.,
Bhattacharya Amit,
Mishra Lokesh C.,
Sharma Manish,
Awasthi Satish K.,
Bhasin Virendra K.
Publication year - 2012
Publication title -
chemical biology and drug design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 77
eISSN - 1747-0285
pISSN - 1747-0277
DOI - 10.1111/j.1747-0285.2012.01383.x
Subject(s) - chalcone , chemistry , stereochemistry , plasmodium falciparum , in vitro , steric effects , phytochemical , active site , biological activity , enzyme , biochemistry , biology , malaria , immunology
Twenty‐seven novel chalcone derivatives were synthesized using Claisen‐Schmidt condensation and their antimalarial activity against asexual blood stages of Plasmodium falciparum was determined. Antiplasmodial IC 50 (half‐maximal inhibitory concentration) activity of a compound against malaria parasites in vitro provides a good first screen for identifying the antimalarial potential of the compound. The most active compound was 1‐(4‐benzimidazol‐1‐yl‐phenyl)‐3‐(2, 4‐dimethoxy‐phenyl)‐propen‐1‐one with IC 50 of 1.1 μg/mL, while that of the natural phytochemical, licochalcone A is 1.43 μg/mL. The presence of methoxy groups at position 2 and 4 in chalcone derivatives appeared to be favorable for antimalarial activity as compared to other methoxy‐substituted chalcones. Furthermore, 3, 4, 5‐trimethoxy groups on chalcone derivative probably cause steric hindrance in binding to the active site of cysteine protease enzyme, explaining the relative lower inhibitory activity.