z-logo
Premium
2D‐ and 3D‐Quantitative Structure‐Activity Relationship Studies for a Series of Phenazine N , N ’‐Dioxide as Antitumour Agents
Author(s) -
Cunha Jonathan Da,
Lavaggi María Laura,
Abasolo María Inés,
Cerecetto Hugo,
González Mercedes
Publication year - 2011
Publication title -
chemical biology and drug design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 77
eISSN - 1747-0285
pISSN - 1747-0277
DOI - 10.1111/j.1747-0285.2011.01237.x
Subject(s) - quantitative structure–activity relationship , steric effects , chemistry , stereochemistry , molecular model , computational chemistry
Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D‐quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model ( r 2  = 0.755, q 2  = 0.505 and F  = 26.70) or comparative molecular similarity indices analysis‐combined steric and electrostatic fields ( r 2  = 0.757, q 2  = 0.527 and F  = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model ( r 2  = 0.736, q 2  = 0.521 and F  = 18.63) or comparative molecular similarity indices analysis‐hydrogen bond acceptor field ( r 2  = 0.858, q 2  = 0.737 and F  = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis‐steric field (92% of overall classification accuracy). 2D‐ and 3D‐quantitative structure‐activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here