Premium
Benzofuranone Derivatives as Effective Small Molecules Related to Insulin Amyloid Fibrillation: A Structure–Function Study
Author(s) -
Rabiee Atefeh,
EbrahimHabibi Azadeh,
Navidpour Latifeh,
Morshedi Dina,
Ghasemi Atiyeh,
Sabbaghian Marjan,
NematiLay Maryam,
NematGorgani Mohsen
Publication year - 2011
Publication title -
chemical biology and drug design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 77
eISSN - 1747-0285
pISSN - 1747-0277
DOI - 10.1111/j.1747-0285.2011.01197.x
Subject(s) - thioflavin , amyloid (mycology) , congo red , fibril , circular dichroism , chemistry , small molecule , biophysics , amyloidosis , fibrillation , insulin , in vitro , amyloid fibril , protein folding , biochemistry , amyloid disease , medicine , biology , amyloid β , alzheimer's disease , disease , organic chemistry , inorganic chemistry , adsorption , atrial fibrillation
Amyloids are protein fibrils of nanometer size resulting from protein self‐assembly. They have been shown to be associated with a wide variety of diseases such as Alzheimer’s and Parkinson’s and may contribute to various other pathological conditions, known as amyloidoses. Insulin is prone to form amyloid fibrils under slightly destabilizing conditions in vitro and may form amyloid structures when subcutaneously injected into patients with diabetes. There is a great deal of interest in developing novel small molecule inhibitors of amyloidogenic processes, as potential therapeutic compounds. In this study, the effects of five new synthetic benzofuranone derivatives were investigated on the insulin amyloid formation process. Protein fibrillation was analyzed by thioflavin‐T fluorescence, Congo red binding, circular dichroism, and electron microscopy. Despite high structural similarity, one of the five tested compounds was observed to enhance amyloid fibrillation, while the others inhibited the process when used at micromolar concentrations, which could make them interesting potential lead compounds for the design of therapeutic antiamyloidogenic compounds.