z-logo
Premium
Spatial Variation in MTBE Biodegradation Activity of Aquifer Solids Samples Collected in the Vicinity of a Flow‐Through Aerobic Biobarrier
Author(s) -
Lesser Luis E.,
Johnson Paul C.,
Spinnler Gerard E.,
Bruce Cristin L.,
Salanitro Joseph P.
Publication year - 2010
Publication title -
groundwater monitoring and remediation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 47
eISSN - 1745-6592
pISSN - 1069-3629
DOI - 10.1111/j.1745-6592.2010.01277.x
Subject(s) - microcosm , biodegradation , environmental chemistry , aquifer , groundwater , environmental science , environmental remediation , spatial variability , chemistry , hydrology (agriculture) , contamination , soil science , ecology , geology , geotechnical engineering , organic chemistry , biology , statistics , mathematics
The spatial variation in methyl tert‐butyl ether (MTBE) biodegradation activity of aquifer solids samples collected in the vicinity of a flow‐through aerobic biobarrier was assessed through use of standard laboratory microcosms. These were prepared by collecting soil cores at a range of locations and depths along different flow paths through the biobarrier. Sections of core samples were placed in sealed bottles with MTBE‐free groundwater from the site. The groundwater was filtered to remove microbes, and sparged with O 2 . The initial MTBE concentration in the microcosms was adjusted to about 1 mg/L. Biodegradation activity was characterized by the magnitude of MTBE concentration reductions occurred over 4 weeks relative to control microcosms. Sampling locations and depths were selected to allow investigation of relationships between MTBEdegrading activity and dissolved oxygen (DO) concentration, MTBE, soil type, and initial microbial conditions (biostimulated vs. bioaugmented). The results suggest a relatively wide‐spread presence of MTBE‐degrading microbial consortia, with varying levels of MTBE‐degrading activity. Significant changes in activity were observed over 0.3‐m vertical distances in the same location; for example, cores from the most upgradient sampling locations contained sections with no discernible MTBEbiodegradation over 4 weeks, as well as sections that achieved order‐of‐magnitude MTBE concentration reductions within 2 weeks. None of those cores, however, achieved MTBE biodegradation to nondetect levels (<0.005 mg/L), as was observed in some cores from downgradient locations. Cores from the bioaugmented regions had the highest frequency of MTBE biodegradation to nondetect levels among their sections suggesting a direct effect of the inoculum and its distribution when it was implanted. Most cores with no activity were associated with the upgradient, low‐DO, and high‐MTBE concentration field environments, but low‐DO field environments also yielded MTBE‐degrading samples. There were no other clear correlations between MTBE‐degrading activity in the microcosms and the local field environment conditions at the time of sampling.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here