Premium
Demonstration of a Microbiologically Enhanced Vertical Ground Water Circulation Well Technology at a Superfund Site
Author(s) -
Lakhwala Fayaz S.,
Mueller James G.,
Desrosiers Richard J.
Publication year - 1998
Publication title -
groundwater monitoring and remediation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 47
eISSN - 1745-6592
pISSN - 1069-3629
DOI - 10.1111/j.1745-6592.1998.tb00620.x
Subject(s) - environmental remediation , bioremediation , air stripping , biodegradation , groundwater remediation , groundwater , bioreactor , contamination , human decontamination , environmental chemistry , environmental science , soil water , chemistry , aquifer , waste management , soil contamination , environmental engineering , soil science , geology , ecology , wastewater , geotechnical engineering , organic chemistry , engineering , biology
A full‐scale ground water circulation well (GCW) system was installed and operated to demonstrate in situ remediation of soil and ground water impacted with a mixture of chlorinated and nonchlorinated organic compounds at a Superfund site in upstate New York. System performance and applicability under site‐specific conditions were evaluated based on the system's ability to meet the New York State Department of Environmental Conservation (NYSDEC) cleanup goals for target compounds in ground water and soil. Contaminants from the unsaturated zone were mobilized (volatilized) by one‐way vacuum extraction, and treated via enhanced biodegradation (bioventing). In the saturated zone, contaminants were mobilized by soil flushing (solubilized) and treated by a combination of air stripping and biodegradation. An in situ aqueous phase bioreactor, and an ex situ gas phase bioreactor, were integrated into the system to enhance treatment via bioremediation. After 15 months of operation, the mass of target contaminants in soil and ground water combined had been reduced by 75%. Removal by biological mechanisms ranged from 35% to 56% of the total observed mass reduction. The in situ and the ex situ bioreactors mineralized 79% and 76%, respectively, of their target biodegradable contaminant loads. Results indicate that some mass reduction in target contaminants may have been from aerobic and aerobic processes within the circulation cell. Nonchlorinated compounds were relatively easy to mobilize (volatilize, solubilize, and/or transport) and treat when compared to chlorinated compounds. The data collected during the 15‐month study indicate that remediation could be accomplished at the Sweden‐3 Chapman site using the technology tested.