Premium
A New Pumping Strategy for Petroleum Product Recovery from Contaminated Hydrogeologic Systems: Laboratory and Field Evaluations
Author(s) -
Abdul Abdul S.
Publication year - 1992
Publication title -
groundwater monitoring and remediation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 47
eISSN - 1745-6592
pISSN - 1069-3629
DOI - 10.1111/j.1745-6592.1992.tb00415.x
Subject(s) - aquifer , environmental science , groundwater , petroleum engineering , hydrogeology , petroleum , oil field , underground storage tank , volume (thermodynamics) , water well , contamination , environmental engineering , waste management , hydrology (agriculture) , storage tank , geology , geotechnical engineering , engineering , paleontology , ecology , physics , quantum mechanics , biology
More than 200,000 gallons of automatic transmission fluid (ATF) leaked from an underground storage tank system and contaminated an area of about 64,000 ft 2 of a soil and ground water system. A pumping strategy for improved drainage and recovery of free oil was developed, tested in a laboratory model aquifer, and implemented and evaluated at the field site. This pumping strategy differs from conventional approaches in two important ways: (1) The oil recovery rate is carefully controlled to maximize the pumping rate while maintaining continuity between the oil layer in the soil and the recovery well, to avoid isolation of the oil in the subsurface; and (2) The rate of ground water pumping is controlled to maintain the depressed oil/water interface at its prepumped position. This approach prevents further spread of oil into the ground water, prevents reduction in the volume of recoverable oil due to residual retention, and maintains a gradient for oil flow toward the recovery well. In a model aquifer study, nearly 100 percent of the recoverable volume of ATF was pumped from the system, and about 56,000 gallons of the ATF has been recovered from the field site.