Premium
Geochemical Factors Controlling Radium Activity in a Sandstone Aquifer
Author(s) -
Grundl Tim,
Cape Mike
Publication year - 2006
Publication title -
groundwater
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 94
eISSN - 1745-6584
pISSN - 0017-467X
DOI - 10.1111/j.1745-6584.2006.00162.x
Subject(s) - radium , aquifer , geology , sulfate , groundwater , geochemistry , hydrology (agriculture) , geotechnical engineering , chemistry , radiochemistry , organic chemistry
Geochemical processes behind the occurrence of radium activities in excess of the U.S. EPA’s drinking water limit of 5 pCi/L combined radium were investigated in a regional sandstone aquifer located in southeastern Wisconsin. Geochemical speciation modeling (PHREEQC 2.7) combined with a detailed understanding of the regional flow system provided by recent flow modeling efforts was used to determine that radium coprecipitation into barite controls radium activity in the unconfined portion of the aquifer. As the aquifer transitions from unconfined to confined conditions, radium levels rise and the water becomes more sulfate rich yet the aquifer remains at saturation with barite throughout. Calculations based on published distribution coefficients and the observed Ra:Ba atomic ratios indicate that barite contains ∼12 μg/kg coprecipitated radium. Confined portions of the aquifer have high concentrations of sulfate, and barium concentrations become too low to be an effective control on radium activity. Additional, as yet undefined, controls on radium are operative in the downgradient, confined portion of the aquifer.