Premium
COLOR and CHLOROPHYLL CONTENT CHANGES of MINIMALLY PROCESSED KIWIFRUIT
Author(s) -
LEUNDA MARÍA ASUNCIÓN,
GUERRERO SANDRA NORMA,
ALZAMORA STELLA MARIS
Publication year - 2000
Publication title -
journal of food processing and preservation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.511
H-Index - 48
eISSN - 1745-4549
pISSN - 0145-8892
DOI - 10.1111/j.1745-4549.2000.tb00403.x
Subject(s) - blanching , chemistry , osmotic dehydration , citric acid , zinc , food science , potassium sorbate , actinidia deliciosa , chlorophyll , ascorbic acid , food storage , sucrose , horticulture , sugar , biology , organic chemistry
A combined factors preservation technology involving blanching and vacuum solutes (sucrose, potassium sorbate, ascorbic and citric acids, zinc chloride) impregnation was proposed to minimize color changes in minimally processed kiwifruit slices during one month storage. Atmospheric impregnation was also studied in order to compare both impregnation techniques. A Box‐Behnken design was adopted and second order polynomial models were computed for different storage times to relate some process variables (blanching time, zinc content, storage temperature) to a color function (Brown Index). As the storage time increased, the response surfaces for vacuum treated fruits were vertically displaced to greater Brown Index values while the response surface behavior for atmospheric impregnated fruits were less dependent on storage time. For vacuum treated fruits, combinations of blanching and addition of zinc chloride improved the color of the finished product at all storage temperatures assayed, but these treatments were detrimental for atmospheric impregnated fruits, increasing significantly the Brown Index values. After storage, total chlorophyll had been degraded between 70 and 90% depending on the pretreatments. There did not appear to be any consistent relation between the changes which occurred in the total chlorophyll content and color.