Premium
Estimation of Item Response Theory Parameters in the Presence of Missing Data
Author(s) -
Finch Holmes
Publication year - 2008
Publication title -
journal of educational measurement
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.917
H-Index - 47
eISSN - 1745-3984
pISSN - 0022-0655
DOI - 10.1111/j.1745-3984.2008.00062.x
Subject(s) - missing data , item response theory , imputation (statistics) , computer science , context (archaeology) , statistics , sample (material) , econometrics , data mining , psychometrics , machine learning , mathematics , paleontology , chemistry , chromatography , biology
Missing data are a common problem in a variety of measurement settings, including responses to items on both cognitive and affective assessments. Researchers have shown that such missing data may create problems in the estimation of item difficulty parameters in the Item Response Theory (IRT) context, particularly if they are ignored. At the same time, a number of data imputation methods have been developed outside of the IRT framework and been shown to be effective tools for dealing with missing data. The current study takes several of these methods that have been found to be useful in other contexts and investigates their performance with IRT data that contain missing values. Through a simulation study, it is shown that these methods exhibit varying degrees of effectiveness in terms of imputing data that in turn produce accurate sample estimates of item difficulty and discrimination parameters.