Premium
The Impact of Annual and Seasonal Rainfall Patterns on Growth and Phenology of Emergent Tree Species in Southeastern Amazonia, Brazil
Author(s) -
Grogan James,
Schulze Mark
Publication year - 2012
Publication title -
biotropica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 96
eISSN - 1744-7429
pISSN - 0006-3606
DOI - 10.1111/j.1744-7429.2011.00825.x
Subject(s) - swietenia macrophylla , dry season , phenology , wet season , biology , population , diameter at breast height , deciduous , ecology , tropical and subtropical dry broadleaf forests , botany , demography , sociology
Understanding tree growth in response to rainfall distribution is critical to predicting forest and species population responses to climate change. We investigated inter‐annual and seasonal variation in stem diameter by three emergent tree species in a seasonally dry tropical forest in southeast Pará, Brazil. Annual diameter growth rates by Swietenia macrophylla demonstrated strong positive correlation with annual rainfall totals during 1997–2009; Hymenaea courbaril growth rates demonstrated weak positive correlation, whereas Parkia pendula exhibited weak negative correlation. For both Swietenia and Hymenaea , annual diameter growth rates correlated positively and significantly with rainfall totals during the first 6 mo of the growing year (July to December). Vernier dendrometer bands monitored at 4‐wk intervals during 3–5 yr confirmed strong seasonal effects on stem diameter expansion. Individuals of all three species expanded in unison during wet season months and were static or even contracted during dry season months. Stems of the deciduous Swietenia contracted as crowns were shed during the early dry season, expanded slightly as new crowns were flushed, and then contracted further during 3–5 wk flowering periods in the late dry season by newly mature crowns. The three species’ physiographic distribution patterns at the study site may partially underlie observed differences in annual and seasonal growth. With most global circulation models predicting conditions becoming gradually drier in southeast Amazonia over the coming decades, species such as Swietenia that perform best on the ‘wet end’ of current conditions may experience reduced growth rates. However, population viability will not necessarily be threatened if life history and ecophysiological responses to changing conditions are compensatory.