Premium
Sea Turtle Nesting as a Process Influencing a Sandy Beach Ecosystem
Author(s) -
Madden Derek,
Ballestero Jorge,
Calvo Carlos,
Carlson Robert,
Christians Elaine,
Madden Erinn
Publication year - 2008
Publication title -
biotropica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 96
eISSN - 1744-7429
pISSN - 0006-3606
DOI - 10.1111/j.1744-7429.2008.00435.x
Subject(s) - sea turtle , turtle (robot) , predation , nest (protein structural motif) , biology , ecology , fishery , akaike information criterion , rookery , nesting season , population , sociology , biochemistry , demography , statistics , mathematics
Sea turtle egg mortality, egg predation, and small organisms associated with turtle nests were studied at Playa Ostional, Costa Rica. Sites with concentrated sea turtle nesting were compared with solitary nesting sites as a function of place and time based on ANOVA, Akaike's Information Criterion, and Bayesian analyses. Results indicate that sea turtle egg mortality was significantly associated ( P < 0.005) with flowing water that erodes or saturates nesting sites, and with overlapped nesting in which sea turtles disturb each other's nests. Sarcophagid and calliphorid fly larvae (Bayesian prior = 1.19; posterior = 2.27), fungi (prior = 1.14; posterior = 1.92), mites (prior = 0.51; posterior = 1.15), and several other types of small organisms increased in number after turtle egg laying ( N = 303 nests; 34,451 turtle eggs). During peak sea turtle nesting periods, visitation to nesting sites by poachers and vertebrate predators was high, and relative number of nests disturbed by these predators was low ( P < 0.02). In multimodel analysis, the three most parsimonious models were: (1) turtle egg mortality and distance from mean high tide; (2) turtle egg predation and distance from mean high tide; and (3) turtle egg mortality and nesting density, with Akaike weights of 0.224, 0.203, and 0.153 respectively. Intensive sea turtle nesting might result in upwelling and turnover of nesting debris and nest organisms, and may influence biotic community structure of sandy beach ecosystems.