z-logo
Premium
Cannibalistic Interactions Resulting from Indiscriminate Predatory Behavior in Tadpoles of Poison Frogs (Anura: Dendrobatidae) 1
Author(s) -
Caldwell Janalee P.,
Araújo Maria Carmozina
Publication year - 1998
Publication title -
biotropica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 96
eISSN - 1744-7429
pISSN - 0006-3606
DOI - 10.1111/j.1744-7429.1998.tb00372.x
Subject(s) - biology , tadpole (physics) , cannibalism , larva , predation , ecology , metamorphosis , zoology , population , predatory fish , physics , demography , particle physics , sociology
Poison frogs in the genus Dendrobates have very small clutch sizes (2–6 eggs among species for which there are data) and typically transport their tadpoles singly to small phytotelmata, such as bromeliad tanks, leaf axils, fallen fruit capsules, and treeholes. Tadpoles of many species are predaceous, consuming larvae of insects that use the same microhabitat for breeding, such as giant damselflies and mosquitoes. Previous studies and observations on the behavior of poison frog tadpoles led us to question whether tadpoles might be cannibalistic. We studied a population of Dendrobates castaneoticus in lowland rainforest in Pará, Brazil; additional data were collected on Dendrobates auratus in Nicaragua. At the study site in Brazil, we established a grid of 40 Brazil nut capsules, the microhabitat used by D. castaneoticus for tadpole deposition. Of 42 tadpoles deposited during the 55 days of the study, 20 were killed or died; 16 of these were presumably killed by conspecific tadpoles. Growth rate and time to metamorphosis was higher among tadpoles that consumed three or more tadpoles or relatively large larvae of the mosquito Trichoprosopon digitatum , a colonist of newly opened Brazil nut capsules. We propose that selection has favored the development of predatory behavior in poison frog tadpoles primarily as a mechanism to eliminate predators from the small phytotelmata in which they develop and that cannibalism is a secondary outcome of this behavior. Predatory behavior also provides tadpoles with a source of food, which is frequently limited in these microhabitats. Additional studies of the biology of tadpoles of other species of Dendrobates are needed to determine the evolution of predatory and cannibalistic behavior in the clade.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here