z-logo
Premium
Ultrastructure of the tentacle nerve plexus and putative neural pathways in sea anemones
Author(s) -
Westfall Jane A.,
Elliott Carol F.
Publication year - 2002
Publication title -
invertebrate biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.486
H-Index - 42
eISSN - 1744-7410
pISSN - 1077-8306
DOI - 10.1111/j.1744-7410.2002.tb00060.x
Subject(s) - anatomy , ultrastructure , plexus , tentacle (botany) , biology , nerve plexus , nerve fiber
. Neurons of sea anemone tentacles receive stimuli via sensory cells and process and transmit information via a plexus of nerve fibers. The nerve plexus is best revealed by scanning electron microscopy of epidermal peels of the tentacles. The nerve plexus lies above the epidermal muscular layer where it appears as numerous parallel longitudinal and short interconnected nerve fibers in Calliactis parasitica . Bipolar and multipolar neurons are present and neurites form interneuronal and neuromuscular synaptic contacts. Transmission electron microscopy of cross sections of tentacles of small animals, both C. parasitica and Aiptasia pallida , reveals bundles of 50–100 nerve fibers lying above groups of longitudinal muscle fibers separated by intrusions of mesoglea. Smaller groups of 10–50 slender nerve fibers are oriented at right angles to the circular muscle formed by the bases of the digestive cells. The unmyelinated nerve fibers lack any glial wrapping, although some bundles of epidermal fibers are partially enveloped by cytoplasmic extensions of the muscle cells; small gastrodermal nerve bundles lie between digestive epithelial cells above their basal myonemes. A hypothetical model for sensory input and motor output in the epidermal and gastrodermal nerve plexuses of sea anemones is proposed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here