z-logo
Premium
Infestation of coconut fruits by Aceria guerreronis enhances the pest status of the coconut moth Atheloca subrufella
Author(s) -
De Santana S.W.J.,
Torres J.B.,
Gondim M.G.C.,
Barros R.
Publication year - 2009
Publication title -
annals of applied biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 80
eISSN - 1744-7348
pISSN - 0003-4746
DOI - 10.1111/j.1744-7348.2009.00339.x
Subject(s) - biology , perianth , mite , botany , horticulture , pest analysis , infestation , larva , cocos nucifera , pollen , stamen
The coconut mite, Aceria guerreronis (Acari: Eriophyidae) and the coconut moth, Atheloca subrufella (Lepidoptera: Phycitidae), exploit the same habitat—meristematic region underneath the coconut fruit perianth. The coconut fruit perianth, however, is a tight structure allowing free colonisation of the meristematic region of the fruit only by small arthropods such as the eriophyid and tarsonemid mites. Fruits infested by the mites develop different levels of necrosis around the perianth providing access to colonising larvae of the coconut moth, which bore the fruit under the perianth resulting in fruit abortion. Based on field observations, we hypothesise that A. subrufella will colonise coconut fruits only if they exhibit damage on the perianth such as the necrosis caused by the coconut mite. Fruits with and without necrosis were collected from different production areas located in three different states along the Brazilian Atlantic coast and inspected for infestation with coconut moth larvae. In the laboratory, coconut fruits with and without necrosis were offered to moths for oviposition preference and tested for colonisation by neonate and third instar larvae. The results showed that the moths showed no preference for fruits with or without necrosis for oviposition and, hence, neonate larvae have to go under the perianth bract to reach the meristematic region of the fruit. However, neonate larvae were unable to colonise fruits without necrosis (0%) compared to 23% and 60% of fruit colonisation success when exhibiting mite necrosis or mechanical damage, respectively. Similar results were found with respect to older coconut moth larvae. Thus, the data support the hypothesis that the indirect interaction through previous fruit colonisation and necrosis caused by the coconut mite allows the larvae of A. subrufella to be a key pest of coconut fruits.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here