z-logo
Premium
Field overwintering biology of Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) and its vector Dalbulus maidis (Hemiptera: Cicadellidae)
Author(s) -
MoyaRaygoza G.,
PalomeraAvalos V.,
GalavizMejia C.
Publication year - 2007
Publication title -
annals of applied biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 80
eISSN - 1744-7348
pISSN - 0003-4746
DOI - 10.1111/j.1744-7348.2007.00185.x
Subject(s) - leafhopper , biology , spiroplasma , overwintering , hemiptera , rhopalosiphum maidis , perennial plant , cicadomorpha , agronomy , field corn , horticulture , homoptera , veterinary medicine , pest analysis , botany , mollicutes , zea mays , aphididae , medicine , mycoplasma , genetics
We studied the corn stunt spiroplasma (CSS), Spiroplasma kunkelii (Mycoplasmatales: Spiroplasmataceae) and its vector the corn leafhopper Dalbulus maidis (Hemiptera: Cicadellidae) under field conditions in Mexico. We surveyed for the presence of CSS in D. maidis by using PCR on samples of adults collected during the 2000–01 and 2003–04 winter (dry) seasons from irrigated low‐elevation sites and un‐irrigated high‐elevation sites. Also, we determined the body size and number of mature eggs of D. maidis females collected during the dry season in 2004 and in females collected on maize seedlings in the first months (June and July) of the wet (summer) season in 2005. Our PCR results showed that CSS was present in leafhopper adults collected during the 2000–01 and 2003–04 dry seasons in irrigated low‐elevation sites. However, in un‐irrigated high‐elevation sites, CSS was present in corn leafhopper adults caught before, but not during, the dry seasons. In these un‐irrigated high‐elevation sites, adult leafhoppers without CSS were recovered during the first 2 months (November and December) of the dry season from the foliage of wild perennial grasses. Females collected on wild perennial grasses in December 2004 showed similar head width and wing length to females caught on maize seedlings in June 2005. However, females collected on maize seedlings in July 2005 had the widest heads, longest wings and highest number of mature eggs. The largest body size of these females that arrived in July 2005 indicates that they are immigrants and support the Roff’s hypothesis that insect migrants should be larger than nonmigrants.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here