z-logo
Premium
Ascocarp formation and survival and primary inoculum production in Erysiphe (sect. Microsphaera) pulchra in dogwood powdery mildew
Author(s) -
MMBAGA M T
Publication year - 2002
Publication title -
annals of applied biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 80
eISSN - 1744-7348
pISSN - 0003-4746
DOI - 10.1111/j.1744-7348.2002.tb00208.x
Subject(s) - ascocarp , powdery mildew , biology , botany , spore , horticulture , ascomycota , taxonomy (biology) , biochemistry , gene
Summary Development of powdery mildew Erysiphe (sect. Microsphaera) pulchra in dogwood ( Cornus florida ) was assessed over a 5‐year period (1996–2000). Variations in the timing of initial infection, disease severity, ascocarp formation, and primary inoculum density were evaluated. Ascocarps formed late in the growing season (September‐November) when relatively low temperatures (< 27°C) persisted for at least 2 weeks, but ascocarp abundance was not influenced by disease severity. Studies conducted in a controlled environment showed that low temperatures triggered ascocarp formation and neither day length nor host plant age affected ascocarp formation. Ascocarps formed within 12–14 days at 18°C/ 10°C (day/night) and 23°C/15°C, but required 25 days at 26°C/18°C; no ascocarps formed at 28°C/ 20°C. Because ascocarps are an important source of primary inoculum for dogwood powdery mildew, ascocarp survival was evaluated in a 2‐year study (1998–2000). 60–80% of mature, dark‐coloured ascocarps survived at ‐10°C and ‐20°C and maintained viable spores for 4 months, but only 4–12% of partially developed, light brown ascocarps survived at ‐10°C and ‐20°C in the first experiment and only 30–40% survived in the second experiment. Immature ascocarp initials (cream‐yellow in colour) withered and disintegrated at all temperatures (24°C/20°C, 4°C, ‐10°C, and ‐20°C). Because ascocarps need time to mature, the timing of ascocarp initiation affects ascocarp maturity and thus winter survival and primary inoculum density. The evaluation of spring inoculum dispersal to spore traps and trap plants in 1999 and 2000 showed that rainfall patterns in early spring influenced primary inoculum and thus the timing of initial infection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here