Premium
Effects of illumination source, culture ventilation and sucrose on potato (Solanum tuberosum) microtuber production under short days
Author(s) -
ALIX M J,
SAVVIDES S,
BLAKE JENNET,
HERRMANN R,
HORNUNG R
Publication year - 2001
Publication title -
annals of applied biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 80
eISSN - 1744-7348
pISSN - 0003-4746
DOI - 10.1111/j.1744-7348.2001.tb00394.x
Subject(s) - sucrose , biology , horticulture , solanum tuberosum , botany , industrial crop , dry matter , dry weight , solanaceae , zoology , food science , biochemistry , gene
Summary The culture yield of a simple method of microtuber production of potato was increased by assessing the interactions of illumination source (Thorn Lighting (Philips) “Colour 84” lamps (TL‐84) or Grolux lamps (Sylvania) in a conventional growth room or natural light in a glasshouse cabinet), type of vessel closure (unventilated or ventilated) and sucrose concentration (1%, 2%, 4% or 8%). Microtuber initiation and growth in unventilated cultures was 100% at 8% sucrose falling to 40–50% at 4% sucrose and was absent at 1% or 2%. With ventilation, rapid tuberisation (90–100%) occurred at initial sucrose concentrations of 2–8%, but only when the medium was allowed to dry before transfer of cultures to short days. Water supplementation of cultures at day 28 prevented tuberisation at 1–4% sucrose up to day 56. The fresh weight and dry weight of microtubers per plant increased significantly with sucrose concentration, with ventilation of cultures and under natural light. In ventilated cultures, the mean number of usable microtubers (± 0.1 g weight) increased from between 1.0–1.4 per plant at 8% sucrose to between 1.6–2.6 per plant at 4% sucrose, with the highest numbers (1.8–2.6 per plant) produced under natural light for the cvs Desirée and King Edward. The mean % dry matter content of microtubers was reduced to 11.3% at 4% sucrose compared with 17.3% at 8% sucrose, but the survival rate of microtubers after 6 months storage was unaffected. Microtuber production under short days was improved at a higher intensity of natural light with culture ventilation in a partially‐shaded glasshouse cabinet, whilst using reduced inputs (lower sucrose supply and no lamps).