Premium
Stomatal control of gas exchange in barley awns
Author(s) -
BISCOE P. V.,
LITTLETON E. J.,
SCOTT R. K.
Publication year - 1973
Publication title -
annals of applied biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.677
H-Index - 80
eISSN - 1744-7348
pISSN - 0003-4746
DOI - 10.1111/j.1744-7348.1973.tb07309.x
Subject(s) - transpiration , photosynthesis , biology , agronomy , respiration , dry weight , botany
SUMMARY The gas exchange of barley ears and awns was measured in the field using a gas analysis system and a diffusion porometer. Awn stomatal resistance decreased with increasing irradiance but to a smaller extent than leaf stomatal resistance. Measurements on ears immediately before and after successively removing awns showed that awn transpiration and photosynthesis were proportional to awn area and that awns accounted for 73% of transpiration by the ear. Although the maximum rates of photosynthesis of which awns were capable declined with age, awns accounted for 80–115% of the net CO 2 uptake of complete ears because the ears‐less‐awns could respire more CO 2 than they absorbed. Ear photosynthesis accounted for 52% of the weekly increment in ear dry weight after ear emergence, but 5 weeks later photosynthesis by the ear balanced respiration. Overall photosynthesis by the ear accounted for 35 % of its final weight. Differences in the light response curves of leaves and ears can be fully accounted for by the different relationships between stomatal resistance and irradiance of the two organs.