z-logo
Premium
Existence of Bertrand equilibrium revisited
Author(s) -
Dastidar Krishnendu Ghosh
Publication year - 2011
Publication title -
international journal of economic theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.351
H-Index - 11
eISSN - 1742-7363
pISSN - 1742-7355
DOI - 10.1111/j.1742-7363.2011.00166.x
Subject(s) - subadditivity , bertrand competition , superadditivity , mathematical economics , economics , symmetric equilibrium , markov perfect equilibrium , oligopoly , mathematics , equilibrium selection , nash equilibrium , game theory , repeated game , cournot competition , combinatorics
In this paper we reconsider existence of Bertrand equilibrium in a symmetric‐cost, homogenous‐product oligopoly. We prove the following main results. (a) If the cost function is strictly superadditive on [0, ∞) then there exists a pure strategy Bertrand equilibrium. Such Bertrand equilibria are necessarily non‐unique. (b) If the cost function is strictly subadditive on [0, ∞) then there exists no Bertrand equilibrium, either in pure strategies or in mixed strategies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here