Premium
The dynamics of the nucleosome: thermal effects, external forces and ATP
Author(s) -
Blossey Ralf,
Schiessel Helmut
Publication year - 2011
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/j.1742-4658.2011.08283.x
Subject(s) - nucleosome , chromatin , dna , biophysics , thermal fluctuations , biology , microbiology and biotechnology , histone , physics , genetics , quantum mechanics
With nucleosomes being tightly associated with the majority of eukaryotic DNA, it is essential that mechanisms are in place that can move nucleosomes ‘out of the way’. A focus of current research comprises chromatin remodeling complexes, which are ATP‐consuming protein complexes that, for example, pull or push nucleosomes along DNA. The precise mechanisms used by those complexes are not yet understood. Hints for possible mechanisms might be found among the various spontaneous fluctuations that nucleosomes show in the absence of remodelers. Thermal fluctuations induce the partial unwrapping of DNA from the nucleosomes and introduce twist or loop defects in the wrapped DNA, leading to nucleosome sliding along DNA. In this minireview, we discuss nucleosome dynamics from two angles. First, we describe the dynamical modes of nucleosomes in the absence of remodelers that are experimentally fairly well characterized and theoretically understood. Then, we discuss remodelers and describe recent insights about the possible schemes that they might use.