Premium
Enzymatic features of the glucose metabolism in tumor cells
Author(s) -
Herling Anique,
König Matthias,
Bulik Sascha,
Holzhütter HermannGeorg
Publication year - 2011
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/j.1742-4658.2011.08174.x
Subject(s) - warburg effect , enzyme , biochemistry , metabolism , isozyme , carbohydrate metabolism , biology , cancer cell , metabolic pathway , glycolysis , flux (metallurgy) , oxidative phosphorylation , cell , microbiology and biotechnology , chemistry , cancer , genetics , organic chemistry
Many tumor types exhibit an impaired Pasteur effect, i.e. despite the presence of oxygen, glucose is consumed at an extraordinarily high rate compared with the tissue from which they originate – the so‐called ‘Warburg effect’. Glucose has to serve as the source for a diverse array of cellular functions, including energy production, synthesis of nucleotides and lipids, membrane synthesis and generation of redox equivalents for antioxidative defense. Tumor cells acquire specific enzyme‐regulatory mechanisms to direct the main flux of glucose carbons to those pathways most urgently required under challenging external conditions such as varying substrate availability, presence of anti‐cancer drugs or different phases of the cell cycle. In this review we summarize the currently available information on tumor‐specific expression, activity and kinetic properties of enzymes involved in the main pathways of glucose metabolism with due regard to the explanation of the regulatory basis and physiological significance of the Warburg effect. We conclude that, besides the expression level of the metabolic enzymes involved in the glucose metabolism of tumor cells, the unique tumor‐specific pattern of isozymes and accompanying changes in the metabolic regulation below the translation level enable tumor cells to drain selfishly the blood glucose pool that non‐transformed cells use as sparingly as possible.