Premium
Harmine specifically inhibits protein kinase DYRK1A and interferes with neurite formation
Author(s) -
Göckler Nora,
Jofre Guillermo,
Papadopoulos Chrisovalantis,
Soppa Ulf,
Tejedor Francisco J.,
Becker Walter
Publication year - 2009
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/j.1742-4658.2009.07346.x
Subject(s) - harmine , autophosphorylation , dyrk1a , phosphorylation , biology , kinase , tyrosine phosphorylation , tyrosine , biochemistry , microbiology and biotechnology , threonine , protein kinase a , serine , pharmacology
DYRK1A is a dual‐specificity protein kinase that autophosphorylates a conserved tyrosine residue in the activation loop but phosphorylates exogenous substrates only at serine or threonine residues. Tyrosine autophosphorylation of DYRKs is a one‐off event that takes place during translation and induces the activation of the kinase. Here we characterize the beta‐carboline alkaloid harmine as a potent and specific inhibitor of DYRK1A both in vitro and in cultured cells. Comparative in vitro assays of four kinases of the DYRK family showed that harmine inhibited substrate phosphorylation by DYRK1A more potently than it inhibited substrate phosphorylation by the closely related kinase DYRK1B [half maximal inhibitory concentrations (IC 50 ) of 33 n m versus 166 n m , respectively] and by the more distant members of the family, DYRK2 and DYRK4 (1.9 μ m and 80 μ m , respectively). Much higher concentrations of harmine were required to suppress tyrosine autophosphorylation of the translational intermediate of DYRK1A in a bacterial in vitro translation system (IC 50 = 1.9 μ m ). Importantly, harmine inhibited the phosphorylation of a specific substrate by DYRK1A in cultured cells with a potency similar to that observed in vitro (IC 50 = 48 n m ), without negative effects on the viability of the cells. Overexpression of the DYRK1A gene on chromosome 21 has been implicated in the altered neuronal development observed in Down syndrome. Here, we show that harmine interferes with neuritogenesis in cultured hippocampal neurons. In summary, our data show that harmine inhibits DYRK1A substrate phosphorylation more potently than it inhibits tyrosine autophosphorylation, and provide evidence for a role of DYRK1A in the regulation of neurite formation.