Premium
Regulatory feedback loop between NF‐κB and MCP‐1‐induced protein 1 RNase
Author(s) -
Skalniak Lukasz,
Mizgalska Danuta,
Zarebski Adrian,
Wyrzykowska Paulina,
Koj Aleksander,
Jura Jolanta
Publication year - 2009
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/j.1742-4658.2009.07273.x
Subject(s) - proinflammatory cytokine , enhancer , monocyte , transcription factor , biology , transcription (linguistics) , microbiology and biotechnology , regulator , regulation of gene expression , gene expression , gene , cancer research , inflammation , immunology , biochemistry , linguistics , philosophy
A novel gene ZC3H12A , encoding MCP‐1‐induced protein 1 (MCPIP), was recently identified in human peripheral blood monocytes treated with monocyte chemotactic protein 1 (MCP‐1) and in human monocyte‐derived macrophages stimulated with interleukin (IL)‐1β. These experiments revealed that the gene undergoes rapid and potent transcription induction upon stimulation with proinflammatory molecules, such as MCP‐1, IL‐1β, tumour necrosis factor α and lipopolysaccharide. Here we show that the induction of ZC3H12A by IL‐1β is predominantly NF‐κB‐dependent because inhibition of this signalling pathway results in the impairment of ZC3H12A transcription activation. Our results indicate the presence of an IL‐1β‐responding region within the second intron of the ZC3H12A gene, which contains four functional NF‐κB‐binding sites. Therefore, we propose that this transcription enhancer transduces a ZC3H12A transcription‐inducing signal after IL‐1β stimulation. Recent reports suggest that MCPIP acts as a negative regulator of inflammatory processes because it is engaged in the degradation of transcripts coding for certain proinflammatory cytokines. Our observations provide evidence for a novel negative feedback loop in the activation of NF‐κB and point to potential significance of MCPIP in the treatment of various pathological states, such as diabetes or cancer that involve disturbances in the functioning of the NF‐κB system.