Premium
Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid
Author(s) -
Kresnowati M. T. A. P.,
van Winden W. A.,
van Gulik W. M.,
Heijnen J. J.
Publication year - 2008
Publication title -
the febs journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.981
H-Index - 204
eISSN - 1742-4658
pISSN - 1742-464X
DOI - 10.1111/j.1742-4658.2008.06667.x
Subject(s) - saccharomyces cerevisiae , benzoic acid , transient (computer programming) , chemistry , biochemistry , computer science , yeast , programming language
Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 m m. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae . Using this experimental set‐up, we found significant fast‐transient (< 3000 s) increases in O 2 consumption and CO 2 production rates, of ∼ 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to ∼ 80% of the initial value. The intracellular metabolite profile in the new steady‐state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O 2 uptake rates.