Premium
Methods for Handling Missing Secondary Respondent Data
Author(s) -
Young Rebekah,
Johnson David
Publication year - 2013
Publication title -
journal of marriage and family
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.578
H-Index - 159
eISSN - 1741-3737
pISSN - 0022-2445
DOI - 10.1111/j.1741-3737.2012.01021.x
Subject(s) - missing data , imputation (statistics) , respondent , statistics , weighting , inverse probability weighting , maximum likelihood , computer science , data quality , econometrics , mathematics , estimator , engineering , medicine , metric (unit) , operations management , political science , law , radiology
Secondary respondent data are underutilized because researchers avoid using these data in the presence of substantial missing data. The authors reviewed, evaluated, and tested solutions to this problem. Five strategies of dealing with missing partner data were reviewed: (a) complete case analysis, (b) inverse probability weighting, (c) correction with a Heckman selection model, (d) maximum likelihood estimation, and (e) multiple imputation. Two approaches were used to evaluate the performance of these methods. First, the authors used data from the National Survey of Fertility Barriers ( n = 1,666) to estimate a model predicting marital quality based on characteristics of women and their husbands. Second, they conducted a simulation testing the 5 methods and compared the results to estimates where the true value was known. They found that the maximum likelihood and multiple imputation methods were advantageous because they allow researchers to utilize all of the available information as well as produce less biased and more efficient estimates.