Premium
Ecological characterization of three different phylogenetic groups belonging to the cellulolytic bacterial species Fibrobacter succinogenes in the rumen
Author(s) -
SHINKAI Takumi,
MATSUMOTO Nobuya,
KOBAYASHI Yasuo
Publication year - 2007
Publication title -
animal science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 38
eISSN - 1740-0929
pISSN - 1344-3941
DOI - 10.1111/j.1740-0929.2007.00469.x
Subject(s) - fibrobacter succinogenes , rumen , hay , biology , cellulase , phylogenetic tree , 16s ribosomal rna , food science , zoology , microbiology and biotechnology , biochemistry , fermentation , cellulose , gene
To study the group‐dependent ecology of Fibrobacter succinogenes in the rumen, real‐time polymerase chain reaction assays for two phylogenetic groups (groups 2 and 3) of F. succinogenes were newly established and applied to rumen samples. Both the assays targeting the bacterial 16S rDNA were sensitive and accurate, showing wide quantifiable ranges (10 4 −10 9 and 10 2 −10 9 copies of 16S rDNA) and high recoveries of known amounts of added DNA (96.9 and 98.0%). The quantity of group 1 was confirmed to be numerable by subtracting assay values of groups 2 and 3 from that of F. succinogenes species (groups 1–3). By using the developed assays and the above subtractive calculation, the quantities of all three groups were evaluated in solid and liquid fractions of the rumen content and also on hay stems. In the solid fraction, groups 1 and 2 were abundantly present, compared with group 3 ( P < 0.05). On untreated hay stems, group 1 was dominant throughout 48 h. In addition, group 1 showed growth even on the cellulase‐treated hay stems, unlike the other two groups. These results suggest that F. succinogenes group 1 greatly contributes to rumen fiber digestion, even for less degradable materials.