Premium
Flapless Implant Surgery Using a Mini‐Incision
Author(s) -
Jeong SeungMi,
Choi ByungHo,
Xuan Feng,
Kim HaRang
Publication year - 2012
Publication title -
clinical implant dentistry and related research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.338
H-Index - 85
eISSN - 1708-8208
pISSN - 1523-0899
DOI - 10.1111/j.1708-8208.2009.00229.x
Subject(s) - osseointegration , implant , medicine , soft tissue , dentistry , abutment , mandible (arthropod mouthpart) , alveolar ridge , hard tissue , dental alveolus , dental implant , surgery , civil engineering , botany , engineering , biology , genus
Background: Traditional flapless implant surgery using a soft tissue punch device requires a circumferential excision of keratinized tissue at the implant site. A new flapless implant technique that can submerge implant fixtures is needed. Purpose: This article describes a flapless implant surgery method using a mini‐incision and compares the effects of soft tissue punch and mini‐incision surgery on both the amount of osseointegration and the bone height around the implants using a canine mandible model. Materials and Methods: Bilateral, edentulated, flat alveolar ridges were created in the mandibles of six mongrel dogs. After a 3‐month healing period, two implants were placed on each side of the mandible using either soft tissue punch or mini‐incision procedures. After an additional 3‐month healing period, a second stage surgery and transmucosal abutment attachment was performed for mini‐incision implant cases. Following a 2‐month healing period, the dogs were sacrificed to evaluate the osseointegration and bone height around the implants. Results: Average bone height was 9.6 ± 0.4 mm in the soft tissue punch group and 9.8 ± 0.3 mm in the mini‐incision group ( p > .05). Average osseointegration was 70.4 ± 6.3% in the soft tissue punch group and 71.2 ± 7.1% in the mini‐incision group ( p > .05). No significant differences were noted between the two groups in vertical alveolar ridge height or bone/implant contact. Conclusions: Our findings support the clinical use of mini‐incision implant surgery at sites where implants need to be protected below the soft tissue during the early phase of healing, particularly for patients with poor bone quality and/or low primary implant stability.