Premium
Angiogenesis: new aspects relating to its initiation and control
Author(s) -
NORRBY KLAS
Publication year - 1997
Publication title -
apmis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.909
H-Index - 88
eISSN - 1600-0463
pISSN - 0903-4641
DOI - 10.1111/j.1699-0463.1997.tb00590.x
Subject(s) - angiogenesis , paracrine signalling , microbiology and biotechnology , basement membrane , extracellular matrix , cancer research , wound healing , biology , inflammation , neovascularization , immunology , receptor , biochemistry
Angiogenesis, the formation of new microvessels from parent microvessels, involves remodeling the basement membrane and interstitial extracellular matrix (ECM) using degrading proteases produced by the endothelial cells (ECs) and other adjacent cells, and the synthesis of ECM molecules by these cells. Degraded ECM releases previously bound heparin‐binding cytokines (and growth factors) which are able to act as ligands to high‐affinity receptors on various target cells, including ECs. The EC carries receptors for a number of cytokines which are produced by neighboring cells or released from the ECM and which can either induce or suppress the angiogenic phenotype of the EC. ECs are able to synthesize and secrete cytokines with auto‐ and paracrine effects. Angiogenesis, which virtually never occurs physiologically in adult tissues (except in the ovary, the endometrium and the placenta), is essential in wound healing and inflammation. Angiogenesis is, in fact, strictly controlled by a redundancy of pro‐ and antiangiogenic paracrine peptide molecules, some of which have recently been described. The expression and synthesis of two distinct anti‐angiogenic factors is, for example, controlled by the p 53 tumor suppressor gene. In certain hypoxic conditions, chronic inflammatory diseases and syndromes, angiogenesis is of pathogenic and prognostic significance. Angiogenesis is, moreover, essential for the growth and metastatic spread of solid tumors. This indicates the potential for developing new therapeutic strategies not only for tumors but also in diseases such as rheumatoid arthritis, psoriasis, liver cirrhosis and diabetic retinopathy. Moreover, the therapeutic induction of angiogenesis in ischemic tissues using recombinant cytokines is also promising for clinical application. In fact, the first successful human gene therapy for stimulating angiogenesis has recently been reported.