z-logo
Premium
Plant species richness: the world records
Author(s) -
Wilson J. Bastow,
Peet Robert K.,
Dengler Jürgen,
Pärtel Meelis
Publication year - 2012
Publication title -
journal of vegetation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 115
eISSN - 1654-1103
pISSN - 1100-9233
DOI - 10.1111/j.1654-1103.2012.01400.x
Subject(s) - species richness , maxima , ecology , quadrat , vascular plant , plant community , biodiversity , biology , geography , shrub , art , performance art , art history
Questions The co‐existence of high numbers of species has always fascinated ecologists, but what and where are the communities with the world records for plant species richness? The species–area relationship is among the best‐known patterns in community ecology, but does it give a consistent global pattern for the most saturated communities, the global maxima? Location The world. Methods We assembled the maximum values recorded for vascular plant species richness for contiguous areas from 1 mm 2 up to 1 ha. We applied the power function to relate maximal richness to area and to make extrapolations to the whole Earth. Results Only two community types contain global plant species maxima. The maxima at smaller spatial grain were from oligo‐ to meso‐trophic, managed, semi‐natural, temperate grasslands (e.g. 89 species on 1 m 2 ), those at larger grains were from tropical rain forests (e.g. 942 species on 1 ha). The maximum richness values closely followed a power function with z  = 0.250: close to Preston's ‘canonical’ value of 0.262. There was no discernable difference between maxima using rooted presence (i.e. including only plants rooted in the plot) vs shoot presence (i.e. including any plant with physical cover over the plot). However, shoot presence values must logically be greater, with the curves flattening out at very small grain, and there is evidence of this from point quadrats. Extrapolating the curve to the terrestrial surface of the Earth gave a prediction of 219 204 vascular plant species, surprisingly close to a recent estimate of 275 000 actual species. Conclusions Very high richness at any spatial grain is found only in two particular habitat/community types. Nevertheless, these high richness values form a very strong, consistent pattern, not greatly affected by the method of sampling, and this pattern extrapolates amazingly well. The records challenge ecologists to consider mechanisms of species co‐existence, answers to the ‘ P aradox of the P lankton’.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here