z-logo
Premium
Transition from P‐ to N‐limited phytoplankton growth in an artificial lake on flooded cutaway peatland in Ireland
Author(s) -
Higgins T.,
Colleran E.,
Raine R.
Publication year - 2006
Publication title -
applied vegetation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.096
H-Index - 64
eISSN - 1654-109X
pISSN - 1402-2001
DOI - 10.1111/j.1654-109x.2006.tb00671.x
Subject(s) - phytoplankton , eutrophication , environmental science , nutrient , macrophyte , peat , phosphorus , standing crop , water column , fish kill , biomass (ecology) , ecology , algal bloom , environmental chemistry , biology , chemistry , organic chemistry
Question: Which nutrient limits primary production in a lake created by flooding industrial cutaway peatland? Location: Clongawny Lake (53°10’N, 07°53’W), County Offaly, Ireland Methods: Nutrient concentrations in lake water and the dynamics of phytoplankton populations were monitored over a 38‐month period. The ratio of dissolved inorganic nitrogen to total phosphorus (DIN:TP) and nutrient enrichment bio‐assays were used to investigate temporal changes in nutrient limitation. Results: Primary production in the new lake was phytoplankton‐driven due to the scarcity of recolonizing macrophytes. Phytoplankton growth was initially phosphorus‐limited. The runoff of phosphate fertilizer from an adjacent coniferous forestry plantation raised the TP concentration of lake water 5.5‐fold. Consequently, the biovolume of phytoplankton increased 30‐fold, and chlorophyll‐a concentrations increased eightfold, reaching hyper‐eutrophic levels. A concurrent depletion of nitrogen in lake water reduced the DIN:TP ratio from 17.8 to 0.6, and phytoplankton growth rapidly became nitrogen‐limited. Phytoplankton composition shifted from dinoflagellates to minute, unicellular chlorophytes, with a coincident decline in species diversity. Cyanobacteria did not proliferate, most likely due to the acidic nature of the lake. Conclusions: Results illustrated the vulnerability of newly created cutaway peatland lakes to developing severe phytoplankton blooms and coincident secondary nitrogen limitation in the presence of moderate external phosphorus inputs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here