Premium
Combining land cover mapping of coastal dunes with vegetation analysis
Author(s) -
Acosta A.,
Carranza M.L.,
Izzi C.F.
Publication year - 2005
Publication title -
applied vegetation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.096
H-Index - 64
eISSN - 1654-109X
pISSN - 1402-2001
DOI - 10.1111/j.1654-109x.2005.tb00638.x
Subject(s) - land cover , vegetation (pathology) , geography , sampling (signal processing) , physical geography , land use , natural (archaeology) , remote sensing , ecology , archaeology , medicine , filter (signal processing) , pathology , computer science , computer vision , biology
Question: Coastal dune systems are characterized by a natural mosaic that promotes species diversity. This heterogeneity often represents a severe problem for traditional mapping or ground survey techniques. The work presented here proposes to apply a very detailed CORINE land cover map as baseline information for plant community sampling and analysis in a coastal dune landscape. Location: Molise coast, Central Italy. Method: We analysed through an error matrix the coherence between land cover classes and vegetation types identified through a field survey. The CORINE land cover map (scale 1: 5000) of the Molise coast was used with the CORINE legend expanded to a fourth level of detail for natural and semi‐natural areas. Vegetation data were collected following a random stratified sampling design using the CORINE land cover classes as strata. An error matrix was used to compare, on a category‐by‐category basis, the relationship between vegetation types (obtained by cluster analyses of sampling plots) and land cover classes of the same area. Results: The coincidence between both classification approaches is quite good. Only one land cover class shows a very weak agreement with its corresponding vegetation type; this result was interpreted as being related to human disturbance. Conclusions: Since it is based on a standard land cover classification, the proposal has a potential for application to most European coastal systems. This method could represent a first step in the environmental planning of coastal systems.