Premium
Heathland restoration in The Netherlands: Effects of turf cutting depth on germination of Arnica montana
Author(s) -
Berg Leon J.L.,
Vergeer Philippine,
Roelofs Jan G.M.
Publication year - 2003
Publication title -
applied vegetation science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.096
H-Index - 64
eISSN - 1654-109X
pISSN - 1402-2001
DOI - 10.1111/j.1654-109x.2003.tb00571.x
Subject(s) - germination , organic matter , agronomy , nutrient , soil water , herbaceous plant , environmental science , chemistry , biology , horticulture , ecology , soil science
. Germination experiments were conducted in a heathland after turf cutting and in a climate chamber to investigate the effects of turf cutting depth, aluminium toxicity and aluminium detoxification by humic acids and base cations on the germination and establishment of Arnica montana . Turfs were cut at three different depths, creating a gradient from organic to mineral soils. Germination and establishment of A. montana were negatively correlated with turf cutting depth. The removal of organic matter resulted in a major decrease in organic fraction of the soil and its nutrients. It also resulted in a considerable decrease in moisture content and humic acids. Additional liming after turf cutting increased germination and establishment in all plots and at all depths. Germination experiments under controlled conditions in a climate chamber revealed a significantly higher germination at low aluminium/calcium (Al:Ca) ratios. High Al:Ca ratios resulted in poor germination, suggesting Al toxicity. Addition of humic acids increased germination, even at high Al:Ca ratios, suggesting immobilization of Al by humic acids. It is concluded that turf cutting can have a marked effect on the success of heathland restoration. It results in the intended removal of the eutrophic layer but also in the unintentional removal of much of the buffering mechanisms and/or Al immobilizing compounds. Additional buffering and/or less deep turf cutting may be necessary to allow germination and establishment of rare herbaceous species such as A. montana .