z-logo
Premium
Grab a Golgi: Laser Trapping of Golgi Bodies Reveals in vivo Interactions with the Endoplasmic Reticulum
Author(s) -
Sparkes Imogen A.,
Ketelaar Tijs,
De Ruijter Norbert C.A.,
Hawes Chris
Publication year - 2009
Publication title -
traffic
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.677
H-Index - 130
eISSN - 1600-0854
pISSN - 1398-9219
DOI - 10.1111/j.1600-0854.2009.00891.x
Subject(s) - golgi apparatus , endoplasmic reticulum , microbiology and biotechnology , secretory pathway , biology , secretion , cytoplasm , biochemistry
In many vacuolate plant cells, individual Golgi bodies appear to be attached to tubules of the pleiomorphic cortical endoplasmic reticulum (ER) network. Such observations culminated in the controversial mobile secretory unit hypothesis to explain transport of cargo from the ER to Golgi via Golgi attached export sites. This proposes that individual Golgi bodies and an attached‐ER exit machinery move over or with the surface of the ER whilst collecting cargo for secretion. By the application of infrared laser optical traps to individual Golgi bodies within living leaf cells, we show that individual Golgi bodies can be micromanipulated to reveal their association with the ER. Golgi bodies are physically attached to ER tubules and lateral displacement of individual Golgi bodies results in the rapid growth of the attached ER tubule. Remarkably, the ER network can be remodelled in living cells simply by movement of laser trapped Golgi dragging new ER tubules through the cytoplasm and new ER anchor sites can be established. Finally, we show that trapped Golgi ripped off the ER are ‘sticky’ and can be docked on to and attached to ER tubules, which will again show rapid growth whilst pulled by moving Golgi.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here