Premium
Cytoskeleton and Vesicle Mobility in Astrocytes
Author(s) -
Potokar Maja,
Kreft Marko,
Li Lizhen,
Daniel Andersson J,
Pangršič Tina,
Chowdhury Helena H.,
Pekny Milos,
Zorec Robert
Publication year - 2007
Publication title -
traffic
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.677
H-Index - 130
eISSN - 1600-0854
pISSN - 1398-9219
DOI - 10.1111/j.1600-0854.2006.00509.x
Subject(s) - biology , microbiology and biotechnology , cytoskeleton , vesicle , astrocyte , neuroscience , cell , genetics , central nervous system , membrane
Exocytotic vesicles in astrocytes are increasingly viewed as essential in astrocyte‐to‐neuron communication in the brain. In neurons and excitable secretory cells, delivery of vesicles to the plasma membrane for exocytosis involves an interaction with the cytoskeleton, in particular microtubules and actin filaments. Whether cytoskeletal elements affect vesicle mobility in astrocytes is unknown. We labeled single vesicles with fluorescent atrial natriuretic peptide and monitored their mobility in rat astrocytes with depolymerized microtubules, actin, and intermediate filaments and in mouse astrocytes deficient in the intermediate filament proteins glial fibrillary acidic protein and vimentin. In astrocytes, as in neurons, microtubules participated in directional vesicle mobility, and actin filaments played an important role in this process. Depolymerization of intermediate filaments strongly affected vesicle trafficking and in their absence the fraction of vesicles with directional mobility was reduced.