z-logo
open-access-imgOpen Access
Using optical coherence tomography for the longitudinal non‐invasive evaluation of epidermal thickness in a murine model of chronic skin inflammation
Author(s) -
Silver Rachel,
Helms Amy,
Fu Wen,
Wang Hui,
Diaconu Doina,
Loyd Candace M.,
Rollins Andrew M.,
Ward Nicole L.
Publication year - 2012
Publication title -
skin research and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.521
H-Index - 69
eISSN - 1600-0846
pISSN - 0909-752X
DOI - 10.1111/j.1600-0846.2011.00558.x
Subject(s) - histology , optical coherence tomography , medicine , pathology , doxycycline , epidermis (zoology) , biology , ophthalmology , anatomy , microbiology and biotechnology , antibiotics
Background Non‐invasive methods are desirable for longitudinal studies examining drug efficacy and disease resolution defined as decreases in epidermal thickness in mouse models of psoriasiform skin disease. This would eliminate the need for either sacrificing animals or collecting serial skin biopsies to evaluate changes in disease progression during an individual study. The quantitation of epidermal thickness using optical coherence tomography ( OCT ) provides an alternative to traditional histology techniques. Methods Using the KC‐Tie2 doxycycline‐repressible psoriasiform skin disease mouse model, OCT imaging was completed on diseased back skin of adult KC‐Tie2 ( n  = 3–4) and control ( n  = 3–4) mice, followed immediately by the surgical excision of the same region for histologic analyses. Animals were then treated with doxycycline to suppress transgene expression and to reverse the skin disease and additional OCT images and tissues were collected 2 and 4 weeks following. Epidermal thickness was measured using OCT and histology. Results Optical coherence tomography and histology both demonstrated that KC‐Tie2 mice had significantly thicker epidermis (~4‐fold; P  < 0.0001) than control animals. By 2 weeks following gene repression, decreases in epidermal thickness were observed using both OCT and histology, and were sustained through 4 weeks. Correlation analyses between histology and OCT values at all time points and in all animals revealed high significance ( R 2  = 0.78); with correlation being highest in KC‐Tie2 mice ( R 2  = 0.92) compared to control animals ( R 2  = 0.16). Conclusion Non‐invasive OCT imaging provided similar values as those collected using standard histologic measures in thick skin of KC‐Tie2 mice but became less reliable in thinner control mouse skin, possibly reflecting limitations in resolution of OCT . Future advances in resolution of OCT may improve and allow greater accuracy of epidermal thickness measurements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here