Premium
Melatonin alleviates lipopolysaccharide‐induced placental cellular stress response in mice
Author(s) -
Wang Hua,
Li Ling,
Zhao Mei,
Chen YuanHua,
Zhang ZhiHui,
Zhang Cheng,
Ji YanLi,
Meng XiuHong,
Xu DeXiang
Publication year - 2011
Publication title -
journal of pineal research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.881
H-Index - 131
eISSN - 1600-079X
pISSN - 0742-3098
DOI - 10.1111/j.1600-079x.2011.00860.x
Subject(s) - melatonin , endocrinology , placenta , medicine , oxidative stress , lipopolysaccharide , nitrotyrosine , glutathione , nitric oxide synthase , nitric oxide , biology , chemistry , fetus , pregnancy , enzyme , biochemistry , genetics
Melatonin protects mice from lipopolysaccharide (LPS)‐induced fetal death and intra‐uterine growth retardation. Nevertheless, its molecular mechanism remains obscure. In the present study, we investigated the effects of melatonin on LPS‐induced cellular stress in placenta. Pregnant mice were given with melatonin [5.0 mg/kg, intraperitoneal (i.p.)] 30 min before and 150 min after LPS (300 μg/kg, i.p.) on gestational day 15. Oxidative stress, endoplasmic reticulum (ER) stress, hypoxic stress, and heat stress in placenta were analyzed at 4 hr after LPS. As expected, maternal LPS administration resulted in placental glutathione (GSH) depletion and up‐regulated the expression of placental antioxidative enzymes. In addition, LPS significantly increased the level of inducible nitric oxide synthase (iNOS) and enhanced the intensity of placental 3‐nitrotyrosine residues. An ER stress, as determined by a decreased GRP78 expression, an obvious eIF2α and JNK phosphorylation, and an increased CHOP expression, were observed in placenta of pregnant mice injected with LPS. In addition, LPS significantly increased mRNA level of placental HIF‐1α, VEGF, and ET‐1, the markers of hypoxic stress. Heme oxygenase (HO)‐1, a marker of heat stress, was also up‐regulated in placenta of LPS‐treated pregnant mice. Interestingly, LPS‐induced placental oxidative stress, hypoxic stress, and ER stress were significantly alleviated when pregnant mice were given with melatonin, whereas melatonin had little effect on LPS‐evoked placental HO‐1 expression. In conclusion, maternally administered melatonin alleviates LPS‐induced cellular stress in the placenta. Melatonin may be useful as pharmacological agents to protect the fetuses against LPS‐induced intra‐uterine fetal death and intra‐uterine growth restriction.